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1 INTRODUCTION

1 Introduction

Cryptocurrencies are a relatively new instrument that has garnered a lot of attention. While their

benefits and drawbacks are not well understood by all market participants, it is frequently traded and

included in investment strategies. For instance, Corbet et al. (2018) show that cryptocurrencies may offer

diversification benefits for investors with short investment horizons. Yet, the trading quality offered by

crypto trading platforms is a major concern, as it depends on the operation of the trading venues, the

technology embedded in the trading process, and the overall design of the market.

A key feature of blockchain is its reliance on a consensus protocol, which establishes the way valida-

tors reach an agreement on the current state of the ledger. As outlined in Nakamoto (2008), the bitcoin

blockchain implements the Proof-of-Work consensus protocol, where validators enter into a computa-

tionally intensive competition to solve numerical puzzles by continuously guessing the solution of hash

functions. This validation process is also generally known as mining and depends on the blockchain’s

aggregate computing or mining power. More specifically, blockchain’s computing power proxies for the

cumulative resources expended on mining and relates to blockchains’ overall reliability and security.

The validation process plays a crucial role in the settlement of crypto asset trading, as miners need to

validate transactions before they can be added to the blockchain. Alterations in the aggregate computing

power on the blockchain may result in changes in settlement latency, which can impact the behavior of

market participants and overall market quality (Hautsch et al. (2018)).

This paper aims to examine the impact of blockchain computing power on the market quality of

cryptocurrency trading. Previous studies in the academic literature have demonstrated that blockchain

computing power and the behavior of miners have an influence on cryptocurrency prices (Easley et al.

(2019); Bhambhwani et al. (2021); Cong et al. (2021); Pagnotta (2022)). By investigating the connection

between the blockchain’s setup and the cryptocurrency trading environment, our research contributes

to the existing literature and stimulates further discussions on these important issues. To the best of

our knowledge, this is the first empirical study that explores the relationship between the aggregate

computing power of the blockchain and the market quality offered by crypto trading platforms.

We measure the market efficiency and liquidity by analyzing the historical intraday quote and trading

data of three cryptocurrencies (Bitcoin, Ether, and Litecoin) on three different trading platforms (Coin-

base, FTX, and Kraken) from January to June 2021. To examine the relationship between market quality

and the blockchain’s aggregate hashrate, we conduct panel regressions, incorporating fixed effects for each

cryptocurrency. The dependent variable in these regressions takes one of the market quality measures,

while the independent variable is the normalized aggregate hashrate. We perform panel regressions using

contemporaneous hashrate and lagged hashrate as independent variables (both individually and jointly)

in order to compare their effects on market quality.

To conduct our analysis, we begin by following the approach outlined by Makarov and Schoar (2020)

and calculate a trade-based arbitrage index. This index is derived by comparing the highest traded

price to the lowest traded price. Additionally, we examine the bid and ask prices quoted on the trading

platforms. In the absence of arbitrage opportunities, the ask price should be higher than the bid price.

Any deviation from this condition implies potential arbitrage profits. We compute a quote-based arbitrage

index by comparing the highest bid price to the lowest ask price offered by the trading venues on a minute-

by-minute basis. We select the higher value between the ratio and one. In our panel regression models,

using the arbitrage indexes as the dependent variable, we observe negative and statistically significant

estimated coefficients (p-value < 0.1 for the trade-based arbitrage index and p-value < 0.05 for the quote-

based index) associated with the blockchain’s previous day’s hashrate. These findings indicate that a

decrease in the blockchain’s aggregate mining power leads to wider cross-platform price discrepancies and

an increase in arbitrage opportunities.

In addition to examining price discrepancy, we also investigate the liquidity conditions. Although
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we do not find any statistically significant results for the quoted bid-ask spread and effective spread in

the regression analysis, we observe significant findings when analyzing transaction costs in terms of price

impact and Kyle (1985)’s Lambda measure. Specifically, we find that these two measures, when lagged by

one day, exhibit negative and statistically significant relationships at the 99% and 95% confidence levels,

respectively. Furthermore, in addition to the lagged relationship, we discover a negative and significant

contemporaneous relationship (p-value <0.05) between Kyle’s Lambda and the aggregate computing

power of the blockchain. These negative estimated coefficients suggest that a decrease in the blockchain’s

aggregate computing power results in a deterioration of liquidity in the crypto market.

Moreover, we consider the possibility that unexpected changes in the blockchain’s aggregate mining

power can have a similar effect on market quality. With this in mind, we calculate the abnormal hashrate

to capture unexpected changes. More specifically, we take the difference between the actual daily hashrate

and a smoothed hashrate, which is obtained through filtering techniques as outlined by Hamilton (2018).

Subsequently, we reevaluate our regression analysis using standardized abnormal hashrate as the inde-

pendent variable. Confirming our initial findings and intuitive expectations, the results indicate a decline

in market quality when there is a decrease in the blockchain’s aggregate mining power. Specifically,

both the contemporaneous and lagged abnormal hashrate exhibit a negative and statistically significant

correlation with the quote-based arbitrage index, effective spread, and Kyle (1985)’s Lambda.

Our paper bridges two strands of existing literature, connecting them in a cohesive manner. The first

strand of research focuses on understanding how various characteristics of blockchain, such as mining and

network features, influence the pricing of cryptocurrencies. In a theoretical model, Pagnotta and Buraschi

(2018) argue that the blockchain’s hashrate and the price of Bitcoin are jointly determined since miners

receive Bitcoin as a reward for validating transactions. Pagnotta (2022) further links Bitcoin prices to the

security level of the blockchain, which is contingent on the aggregate mining power. Additionally, Easley

et al. (2019) present a model that emphasizes the relationship between Bitcoin price, mining rewards,

transaction fees, and waiting time. On the empirical front, Liu and Tsyvinski (2021) use the price of

mining hardware and electricity costs as proxies for mining expenses and find that mining characteristics

do not move in tandem with cryptocurrency returns. However, Bhambhwani et al. (2021) demonstrate

that blockchain hashrate and cryptocurrency prices are cointegrated with mining capacity. By building

upon these studies, our paper extends the analysis to investigate the impact of blockchain’s aggregate

mining power on the market quality provided by cryptocurrency trading platforms.1

The second strand of literature focuses on examining the market quality provided by cryptocur-

rency trading platforms. In terms of liquidity, Brauneis et al. (2021) analyze trading and quote data of

Bitcoin and Ether to compare the accuracy of different low-frequency liquidity measures. Barbon and

Ranaldo (2022) compute and compare transaction costs between centralized platforms (e.g., Binance)

and decentralized platforms (e.g., Uniswap), finding that transaction costs tend to be lower on central-

ized platforms. Additionally, several studies investigate arbitrage opportunities and price discrepancies

among multiple crypto-trading platforms. Makarov and Schoar (2020) construct an arbitrage index using

intraday trading data from a larger sample of 13 crypto trading platforms and aim to explain the drivers

of price discrepancies. Meanwhile, Crépellière et al. (2023) observe a decrease in arbitrage opportunities

in the crypto market after 2018. Finally, Hautsch et al. (2018) present a theoretical study showing that

arbitrage boundaries increase with expected latency and latency uncertainty, a finding that our empirical

results confirm.

The implications of our findings carry significant policy implications, particularly with regard to

the market design of cryptocurrency trading. We find that market quality provided by crypto trading

venues improves with the aggregate blockchain computing power supplied by the miners. However, it is

important to note that this aspect is beyond the control of both the trading service providers and the

1Several papers (e.g., Cong et al. (2021) and Sockin and Xiong (2023)) focus on the production side of the cryptocurrency

and show that the evolution of cryptocurrency prices is linked to the marginal cost of production.
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regulators. Instances of decreased hashrate, such as those resulting from escalating electricity costs or

power interruptions, pose a threat to the smooth operation of trading venues. In light of these results,

it is imperative for stakeholders to consider this distinctive characteristic of blockchain technology when

designing an optimal market framework for crypto assets.

The subsequent sections of the paper are structured as follows. Section 2 delves into blockchain

mining and provides a detailed explanation of hashrate. Section 3 outlines the data sample used in our

analysis and elaborates on the construction of market quality measures. Section 4 presents and discusses

the empirical results obtained from our analysis. Finally, Section 5 serves as the conclusion, summarizing

the key findings and implications of our study.

2 Proof of Work and hashrate

Blockchain is a decentralized technology that serves as a shared and immutable ledger for recording

transactions and tracking assets within a network. It operates as a distributed database, where multiple

nodes in a computer network maintain and validate the ledger collectively. Functioning as a database,

blockchain stores information electronically in a digital format. Transactions and data are grouped

together in blocks, with each block containing a cryptographic hash of the preceding block, a timestamp

indicating the block’s creation time, and the actual transaction data. When a new block is created, it

utilizes a hash function, which is a mathematical algorithm that processes data of any size and generates

a fixed-length output known as a hash. This process involves encrypting the previous block’s information

and combining it with the current block’s data and timestamp. The resulting hash serves as a unique

identifier for that particular block and ensures the integrity and security of the blockchain.

In a blockchain system like Bitcoin, where there is no central authority to ensure the integrity of the

database, validation and control of the information are carried out collectively by the network’s nodes.

The consensus mechanism used in the Bitcoin blockchain is called Proof-of-Work (PoW). To send a block

for validation in the network, a user must first find a valid solution by repeatedly hashing modified data

until a specific condition is met. This process, commonly known as “mining,” requires computational

power and electricity, which act as the user’s stake in the network. Once a valid solution is found, the

user can submit the block to the network for validation by other users.

Under the Proof-of-Work algorithm, users are incentivized to invest computational power and elec-

tricity in the form of mining to earn block rewards. The absence of rewards for unvalidated blocks,

combined with the costs associated with electricity consumption, discourages users from engaging in ma-

licious activities within the network. This mechanism helps maintain the security and integrity of the

blockchain by ensuring that participants have a vested interest in following the rules and contributing to

the network’s consensus.

The speed at which new blocks are validated in the blockchain is influenced by two main factors: the

difficulty of the computational problem and the overall mining capacity of the network. The difficulty

of solving the computational problem is a crucial aspect of the blockchain’s protocol. It determines the

level of computational effort required to find a valid solution. The difficulty is adjusted dynamically

to ensure that the average time to validate a new block remains relatively constant. In the case of

Bitcoin, the target is to add one block to the blockchain approximately every ten minutes. If blocks

are validated faster than this target rate, indicating an increase in mining capacity, the difficulty is

automatically adjusted to become more challenging. On the other hand, if blocks are validated slower

than the target rate, indicating a decrease in mining capacity, the difficulty is adjusted to become less

challenging. This dynamic adjustment helps maintain a stable rate of block validation over time. The

overall mining capacity of the blockchain network also plays a significant role in the validation speed. The

more computational power dedicated to mining, the higher the chances of finding a valid solution within

a shorter time. Insufficient mining capacity, on the other hand, can result in slower block validation times
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as there are fewer hash guesses completed by the network within a given period.

Moreover, the aggregate computing power of a blockchain network plays a crucial role in determining

its security. A higher mining capacity generally leads to a more secure and robust network. In a healthy

and well-functioning blockchain network with a distributed mining capacity, it becomes extremely difficult

for any single entity or group to gain majority control. The decentralized nature of blockchain, where

mining power is distributed across multiple nodes, helps ensure the security and integrity of the network.

The more dispersed the mining capacity is among various nodes, the more resilient the network becomes

against malicious attacks. For example, if a single entity or a group of colluding entities amasses a

majority of the mining power, they can potentially execute a 51% attack. By controlling the majority of

the mining power, they can manipulate the consensus mechanism and undermine the immutability and

integrity of the blockchain. This is why a high level of mining capacity and a well-distributed distribution

of mining power are crucial to maintain the security of a blockchain network.

Hashrate is a common measure used to quantify the computing power of a blockchain network, specif-

ically in the context of mining. Hashrate represents the number of cryptographic hash calculations that

a mining device or network can perform per second. The hashrate of a mining device is dependent on its

hardware specifications and capabilities. Different types of hardware, such as CPUs (Central Processing

Units), GPUs (Graphics Processing Units), and ASICs (Application-Specific Integrated Circuits), have

varying levels of computational power and, consequently, different hashrates. A typical high-performance

CPU can achieve a hashrate of around 20,000 hashes per second (H/s). GPUs, which are commonly

used for mining, can achieve hashrates in the range of 0.4 Gigahashes per second (GH/s). ASICs, which

are specialized mining devices designed specifically for mining cryptocurrencies, can achieve significantly

higher hashrates, reaching around eight Terahashes per second (TH/s).

3 Data and variable construction

In our analysis, we utilize data from two primary sources. The first source is Kaiko, a well-established

crypto data vendor that specializes in providing comprehensive cryptocurrency market data. Kaiko’s

data is widely used in empirical studies within the field.2 We specifically obtain historical intraday order

book and trading data for three major cryptocurrencies: Bitcoin, Ether, and Litecoin, all traded against

the U.S. dollar. The data covers the period from January to June 2021.

To ensure the reliability and consistency of our data, we specifically focus on three major crypto

trading platforms: Coinbase, Kraken, and FTX. These platforms are known for their substantial trading

volumes and active user bases. By selecting these platforms, we aim to minimize any potential issues

related to false or fabricated trading volumes, which have been a concern in the cryptocurrency market.

In fact, according to a report by Hougan et al. (2019), only a limited number of platforms, including the

ones in our sample, were identified as having “real volume” and maintaining high standards of trading

transparency and integrity.

For the order book data, we get the best bid and ask price at a twice per minute frequency on each

platform. For every minute and trading platform, we compute the volume-weighted bid and ask price

to form minute-level observations. Moreover, we have the minute-level price and trading information,

including last price and trading volume.

We supplement our analysis with data from the second data source, Coin Metrics, which provides us

with daily measurements of the Bitcoin blockchain’s hashrate. The hashrate serves as an indirect measure

of the aggregate computing capacity of the blockchain network. It is estimated based on the number of

blocks mined during a given day and the mining difficulty.

2For example, see Biais et al. (2023); Makarov and Schoar (2020); Bhambhwani et al. (2021); Barbon and Ranaldo

(2022); Crépellière et al. (2023).
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3.1 Market quality measures

Our objective is to analyze the relationship between market quality and Bitcoin mining capacity. To

achieve this, we collect intraday data on cryptocurrency trading and quote activity. The data we gather

is at a minute-level frequency and is used to compute various market efficiency and liquidity measures.

However, since the mining hashrate is reported on a daily basis, we aggregate the minute-level data to a

daily frequency for each individual crypto platform. This ensures that our data aligns with the frequency

of the Bitcoin mining hash rates. Additionally, we calculate the average values across the three crypto

platforms, except for the arbitrage indexes, which are computed using data from multiple platforms.

This approach allows us to examine the relationship between market quality and mining capacity using

consistent daily-level data.

For each crypto platform j and cryptocurrency i, we utilize minute-level data (denoted by subscript

τ) to estimate daily market quality measures (denoted by subscript t). The specific methods used for

estimation are described below, and we suppress the subscripts i and j in the formulas. To facilitate easier

interpretation and comparison with hash rates, we scale certain variables using a multiplier. Finally, the

daily market-wide measures for each cryptocurrency are obtained by calculating the average across the

three crypto platforms.

• Return (r)

Return is the natural logarithmic difference between the beginning and closing quote midpoint,

which is the average of the best bid and ask prices pricemid
t = (priceaskt + pricebidt )/2

rt = log(pricemid
t )− log(pricemid

t−1 )

• Volatility (σ)

Return volatility is measured by the realized volatility, which is the squared root of the sum of the

intraday squared returns

σt =

√∑
τ

r2τ

• Quoted spread (QS)

The percentage quoted spread is the difference between the best ask price (priceask) and the best

bid price (pricebid) of each order book snapshot, divided by the quote midpoint (pricemid). The

daily quoted spread is the simple average of the intraday measure. We scale this measure by 1000

QSτ =
priceaskτ − pricebidτ

pricemid
τ

QSt = QSτ × 1000

• Effective spread (ES)

The effective spread is calculated as follow. The daily effective spread is the simple average of the

intraday measure. We scale the measure by 1,000

ESτ =
2× |pricetradeτ − pricemid

τ |
pricemid

τ

ESt = ESτ × 1000

where pricetradeτ is the transaction price recorded during the same minute.

• Price impact (PI)

We first determine the trading indicator (D=+1 for buyer-initiated trades and D=-1 for seller-

initiated trades) applying the Lee and Ready (1991) algorithm. Then we compute the percentage
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change in the quoted mid price after taking into account the trade direction. The daily price impact

is the simple average of the intraday measure. We scale the measure by 1,000

PIτ = Dτ ×
Pricemid

τ+1 − Pricemid
τ

Pricemid
τ

PIt = PIτ × 1000

• Kyle’s Lambda (λ)

Kyle (1985)’s Lambda measures the cost, in terms of price movement, of taking liquidity and is an

inverse measure of liquidity. To compute the daily Kyle’s Lambda, we estimate the OLS coefficient

λ using the daily intraday observations. We scale the measure by 10,000

rτ = c+ λDτ log(volumeτ × pricetradeτ ) + ετ

λt = λ̂× 10000

In addition to the these market quality measures, we also calculate two arbitrage indexes to evaluate

market efficiency. The trade-base arbitrage index quantifies the potential for arbitrage by comparing the

highest traded price with the lowest traded price observed across multiple trading venues during each

minute. On the other hand, the quote-base arbitrage index assesses arbitrage opportunities by examining

the highest bid price and the lowest ask price offered by the trading venues on a minute-to-minute basis.

The construction of these two indexes is outlined below.

• Trade-based arbitrage index (Arbtrade)

We construct the trading price-based arbitrage index following Makarov and Schoar (2020). For

every minute during our sample period, we take the highest price across all platforms and divide it

by the minimum price. Then we average the arbitrage index at the daily level.

Arbtradeτ = max(pricetradeτ )/min(pricetradeτ )

Arbtradet = Arbtradeτ × 100

• Quote-based arbitrage index (Arbquote)

In addition to the trade-base arbitrage index, we also construct a bid-ask spread-based arbitrage

index. In an arbitrage-free market, the ask price should always be greater than the bid price

for the same financial instrument across different trading venues. This condition ensures that

arbitrageurs cannot exploit price discrepancies and make riskless profits. To capture potential

arbitrage opportunities, we calculate an arbitrage index for each minute by dividing the highest bid

price by the lowest ask price, but only when the bid price is greater than the ask price. If the bid

price is not greater than the ask price, we assign a value of 1 to indicate the absence of arbitrage

opportunity. Finally, we take the daily average of the arbitrage index to summarize the overall level

of potential arbitrage in the market.

Arbquoteτ = max(max(pricebidτ )/min(priceaskτ ), 1)

Arbquotet = Arbquoteτ × 100

By visualizing the trade-base and quote-base arbitrage indexes for these three cryptocurrencies, Figure

1 provides insights into the presence and variation of arbitrage opportunities within the market. First of

all the time dynamic shows that the two indexes are highly correlated. The correlation between the two

time series is 0.873 for Bitcoin, 0.808 for Ether, and 0.771 for Litecoin. Additionally, the figure highlights

the periods in which arbitrage opportunities tend to rise. Specifically, these periods include January,

the end of February to the beginning of March, mid-April, and the second half of May 2021. Both the
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trade-base and quote-base arbitrage indexes identify these time intervals as periods of increased arbitrage

potential across all three cryptocurrencies.The observed similarities in the movement and identification of

arbitrage opportunities by both indexes underscore their relevance and effectiveness in capturing market

dynamics.

In comparison to the arbitrage index computed by Makarov and Schoar (2020) using a larger sample

of 13 crypto trading platforms, our arbitrage indexes (before scaling by 100) exhibit a smaller scale. This

difference in scale may arise due to several factors, including the sample size and sample period. It is

worth noting that Makarov and Schoar (2020) conducted their analysis during a different time period

(2017-2018) which predates our sample period. Furthermore, the study by Crépellière et al. (2023)

suggests that the arbitrage opportunities in the crypto market have diminished after 2018. This finding

aligns with the notion that the crypto market has undergone significant changes and maturation over

time. Therefore, the observed differences in the scale of arbitrage indexes between our study and Makarov

and Schoar (2020) may reflect these evolving market dynamics.

Table 1. Summary statistics

This table reports summary statistics of blockchain aggregate hashrate (Panel A) and market quality measures (Panel B). The

sample period is January to June 2021. The construction of the measures is described in Section 3.1.

Panel A: Hashrate

N mean std

Hashrate 180 1.5081×108 2.1741×107

Panel B: Market quality

N mean std N mean std

Return Volatility

btc-usd 180 0.0008 0.0493 180 0.0538 0.0255

eth-usd 180 0.0047 0.0681 180 0.0677 0.0385

ltc-usd 180 -0.0003 0.0755 180 0.0794 0.0394

Arbitrage Index (Trade) Arbitrage Index (Quote)

btc-usd 180 100.0582 0.0315 180 100.0708 0.0390

eth-usd 180 100.0740 0.0345 180 100.0768 0.0451

ltc-usd 180 100.1599 0.0811 180 100.0648 0.0625

Quoted Spread Effective Spread

btc-usd 180 0.0811 0.0683 180 1.3995 0.7615

eth-usd 180 0.1748 0.1172 180 1.7556 0.9819

ltc-usd 180 0.7478 0.4349 180 2.0880 1.0287

Price Impact Kyle

btc-usd 180 0.1502 0.1165 180 0.6836 0.3081

eth-usd 180 0.1947 0.1725 180 0.8961 0.4336

ltc-usd 180 0.1324 0.1854 180 1.4184 0.7063

Table 1 presents the summary statistics for the blockchain hashrate and the market quality measures

discussed in this section. By examining the sample means of these measures across the three cryptocur-

rencies, we observe that Bitcoin generally exhibits more favorable market trading conditions compared

to Ether and Litecoin.



3 DATA AND VARIABLE CONSTRUCTION

Figure 1. Arbitrage Indexes

This figure plots the trade-base arbitrage index and the quote-base arbitrage index for Bitcoin (Panel A), Ether (Panel B), and

Litecoin (Panel C). The sample period is from January to June 2021. The construction of the arbitrage indexes is described in

Section 3.1.

Panel A: Bitcoin

Panel B: Ether

Panel C: Litecoin
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4 Hashrate and market quality

To analyze the relationship between blockchain mining capacity and the market quality provided by the

crypto trading platforms, we run the following cryptocurrency-day level panel regressions as specified in

Equation (1).

MarketQualityi,t = β1norm(HashRate)t + αi + εi,t (1)

MarketQualityi,t represents the market quality measure of interest for cryptocurrency i on day t.

HashRatet denotes the blockchain mining capacity measured by the hashrate on day t. We include

cryptocurrency fixed effects as αi to account for the differences across the instruments.

In addition to the previous panel regression analysis, we also perform a similar regression with one-day

lagged hashrate to examine the potential impact of blockchain mining capacity on the market quality of

the following day. This allows us to explore whether changes in mining capacity have a delayed effect on

market quality. The model specification is as follows:

MarketQualityi,t = β1norm(HashRate)t−1 + αi + εi,t (2)

In order to account for potential correlation within each cryptocurrency, we cluster the standard

errors at the cryptocurrency level in all our regression models. Clustering the standard errors allows us

to address any potential heteroscedasticity or correlation within the observations belonging to the same

cryptocurrency. By clustering at the cryptocurrency level, we ensure that our standard errors are robust

and properly account for the within-cryptocurrency correlation structure in our data.

Table 2 presents the estimated results for the contemporaneous and lagged regressions, where the

dependent variables are various market quality measures. Panel A focuses on the price discrepancy

measured by the arbitrage indexes. The results indicate that the contemporaneous relationship between

the blockchain hashrate and the arbitrage indexes is not statistically significant in Columns (1) and (3).

However, the lagged coefficients in Columns (2) and (4) are negative and statistically significant at the

90% and 95% confidence levels, respectively. These findings suggest that a decrease in the blockchain’s

aggregate computing power is associated with a significant increase in price discrepancy and potential

arbitrage opportunities across different crypto-trading platforms in the following day.

The empirical results obtained in our study align with the theoretical implications put forward

by Hautsch et al. (2018). Their theoretical model highlights the role of the validation process in the

blockchain-based settlement cycle and its impact on the limits to arbitrage across multiple trading plat-

forms. According to their model, latency in the validation process, which is influenced by factors such

as hashrate and mining difficulty, translates to settlement latency. This latency and the uncertainty

in settlement latency expose traders to potential adverse price movements and hinders their ability to

exploit price differences across trading venues through arbitrage. Specifically, Hautsch et al. (2018) find

that cryptocurrency price discrepancies increase with the expected settlement latency. As a decrease in

mining power slows down the validation process, leading to longer settlement latencies, our empirical

findings are consistent with their theoretical predictions.

In Panel B of Table 2, we examine the relationship between the blockchain’s aggregate computational

power and liquidity measures, specifically the quoted bid-ask spread and effective spread. The results

show that the hashrate does not have a statistically significant relationship with these spread-based

measures. This implies that changes in mining capacity do not have a direct impact on the level of

liquidity as measured by the bid-ask spreads.

Moving to Panel C, we investigate the relationship between the blockchain hashrate and price impact,

which measures the extent to which transactions impact asset prices. In the contemporaneous analysis,

the coefficient of the hashrate on price impact is negative but not statistically significant. However, when

considering the lagged hashrate, we observe a negative and statistically significant relationship, suggest-

ing that a decrease in mining power is associated with larger price movements caused by transactions.
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Table 2. Market quality and hashrate

This table reports the panel regression results. The dependent variables are, in Panel A the trade-base arbitrage index and the

quote-base arbitrage index, in Panel B the quoted spread and the effective spread, and in Panel C price impact and Kyle (1985)’s

Lambda. These measures are computed according to the description in Section 3.1. The independent variable is the actual

blockchain hashrate. We also standardize the hashrate. We run the regression for both the contemporaneous hashrate and lagged

hashrate separately. Our sample covers three cryptocurrencies (bitcoin, ether, and litecoin) traded on three crypto trading

platforms (Coinbase, FTX, and Kraken) from January to June 2021. We include cryptocurrency fixed effects. The standard errors

are clustered by cryptocurrency and are reported in parenthesis. Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Panel A: Arbitrage index

Arbitrage Index (Trade) Arbitrage Index (Quote)

(1) (2) (3) (4)

HashRatet 0.001 -0.001

(0.001) (0.002)

HashRatet−1 -0.007∗ -0.009∗∗

(0.002) (0.001)

Crypto FE Yes Yes Yes Yes

Clustering Crypto Crypto Crypto Crypto

Observations 540 540 540 540

R2 0.407 0.411 0.010 0.020

Panel B: Spreads

Quoted Spread Effective Spread

(1) (2) (3) (4)

HashRatet 0.021 -0.142

(0.014) (0.056)

HashRatet−1 0.011 -0.158

(0.011) (0.065)

Crypto FE Yes Yes Yes Yes

Clustering Crypto Crypto Crypto Crypto

Observations 540 540 540 540

R2 0.559 0.558 0.091 0.092

Panel C: Price impact

Price Impact Kyle

(1) (2) (3) (4)

HashRatet -0.000 -0.082∗∗

(0.004) (0.014)

HashRatet−1 -0.011∗∗∗ -0.092∗∗

(0.000) (0.011)

Crypto FE Yes Yes Yes Yes

Clustering Crypto Crypto Crypto Crypto

Observations 540 540 540 540

R2 0.026 0.027 0.275 0.276
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Furthermore, both the contemporaneous and lagged coefficients for Kyle (1985)’s Lambda are negative

and highly significant. Kyle (1985)’s Lambda captures the price impact of trading volume, reflecting

the adverse effect of liquidity on transaction costs. These results support the notion that liquidity de-

teriorates and transactions have a more substantial impact on prices when the blockchain’s aggregate

computational power decreases.

Overall, based on our analysis, there is a positive association between market quality and blockchain

computational power. Specifically, a decrease in the blockchain’s aggregate computational power, as

measured by the hashrate, is associated with a deterioration in market quality. This is evident from the

increased arbitrage opportunities and the worsened liquidity observed in the cryptocurrency market.

4.1 Abnormal mining power

In our analysis, we also examine the unexpected change in blockchain hashrate to better understand its

impact on the cryptocurrency trading market. Following Makarov and Schoar (2020)’s measure of buying

pressure, which is the difference between the actual bitcoin price and the smoothed bitcoin price, we

construct a measure called the abnormal hashrate (abHashRate). This measure represents the difference

between the realized hashrate and the smoothed hashrate. To estimate the daily smoothed hashrate,

we employ the filtering technique proposed by Hamilton (2018).3 More specifically, we estimate an

autoregressive model with four lags for the hashrate, using the previous 90 days’ hashrate data.4 Based

on the regression results, we predict the hashrate for the following day (i.e., t + 1) as the smoothed

hashrate. Finally, the abnormal hashrate is computed as the difference between the actual hashrate and

the smoothed hashrate. The estimation is formulated bellow.

HashRatet = c+

4∑
τ=1

βτHashRatet−τ + εt (3)

abHashRatet+1 = HashRatet+1 − ̂HashRatet+1 (4)

By focusing on the unexpected changes in hashrate, we aim to capture the unforeseen fluctuations in

computational power and assess their effects on various features of the blockchain. This measure allows

us to analyze how sudden drops in mining capacity impact the cryptocurrency trading market.

Figure 2 plots the time series of the realized hashrate (blue line) and the smoothed hashrate (orange

line) in Panel A. Panel B plots the time series of abnormal hashrate.

We standardize the abnormal hashrate to ensure that the variable is on a comparable scale. We

then re-estimate the panel regression models and present the results in Table 3. In Panel A, we exam-

ine the estimated coefficients for cryptocurrency return and volatility. Consistent with the findings of

Bhambhwani et al. (2021), our results show a positive association between blockchain mining power and

cryptocurrency returns. This can be attributed to factors such as the speed of validation, blockchain

security, and transaction costs, which are influenced by the mining power. Furthermore, our analysis

reveals a statistically significant negative relationship between both the contemporaneous and lagged

abnormal hashrate and cryptocurrency return volatility. In other words, a decrease in blockchain mining

power is accompanied by an increase in the volatility of cryptocurrency returns.

In Panel B of Table 3, we examine the estimated coefficients for regressing the arbitrage indexes on

the abnormal hashrate. While we do not find significant results for the trade price-based arbitrage index,

our findings reveal important insights for the bid-ask spread-based arbitrage index.

In the contemporaneous regression using the bid-ask spread-based arbitrage index, we observe a

statistically significant negative coefficient of -0.001, indicating that a decrease in the abnormal hashrate

3Makarov and Schoar (2020) use the Hodrick-Prescott (Hodrick and Prescott (1997)) filter for unexpected buying pres-

sure, but we use Hamilton (2018) filter to avoid the drawbacks pointed out in this paper.
4Results are consistent with a 30-day or 180-day estimation window.
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Figure 2. Hashrate and abnormal hashrate

This figure plots the actual blockchain aggregate hashrate and the Hamilton (2018) filtered smoothed hashrate in Panel A. In

Panel B, this figures plots the abnormal hashrate, which is the difference between the actual hashrate and smoothed hashrate.

The sample period is from January to June 2021.

Panel A

Panel B
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Table 3. Market quality and abnormal hashrate

This table reports the panel regression results. The dependent variables are, in Panel A, cryptocurrency return and return

volatility, in Panel B the trade-base arbitrage index and the quote-base arbitrage index, in Panel C in the quoted spread and the

effective spread, and in Panel D price impact and Kyle (1985)’s Lambda. These measures are computed according to the

description in Section 3.1. The independent variable is the abnormal blockchain hashrate, which is the difference between the

actual hashrate and the smoothed hashrate based on Hamilton (2018). We also standardize the abnormal hashrate. We run the

regression for both the contemporaneous abnormal hashrate and lagged abnormal hashrate separately. Our sample covers three

cryptocurrencies (bitcoin, ether, and litecoin) traded on three crypto trading platforms (Coinbase, FTX, and Kraken) from

January to June 2021. We include cryptocurrency fixed effects. The standard errors are clustered by cryptocurrency and are

reported in parenthesis. Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Panel A: Return and volatility

Return Volatility

(1) (2) (3) (4)

abHashRatet 0.004∗ -0.002∗∗

(0.001) (0.000)

abHashRatet−1 0.007∗∗ -0.003∗∗∗

(0.001) (0.000)

Crypto FE Yes Yes Yes Yes

Clustering Crypto Crypto Crypto Crypto

Observations 540 540 540 540

R2 0.008 0.022 0.086 0.093

Panel B: Arbitrage index

Arbitrage Index (Trade) Arbitrage Index (Quote)

(1) (2) (3) (4)

abHashRatet 0.002 -0.001∗∗

(0.001) (0.000)

abHashRatet−1 -0.004 -0.007∗

(0.001) (0.002)

Crypto FE Yes Yes Yes Yes

Clustering Crypto Crypto Crypto Crypto

Observations 540 540 540 540

R2 0.408 0.412 0.010 0.045

Panel C: Spread

Quoted Spread Effective Spread

(1) (2) (3) (4)

abHashRatet 0.019 -0.047∗∗

(0.010) (0.008)

abHashRatet−1 0.015 -0.051∗∗∗

(0.010) (0.003)

Crypto FE Yes Yes Yes Yes

Clustering Crypto Crypto Crypto Crypto

Observations 540 540 540 540

R2 0.562 0.561 0.088 0.089

Panel D: Price impact

Price Impact Kyle

(1) (2) (3) (4)

abHashRatet -0.003 -0.019∗

(0.003) (0.005)

abHashRatet−1 -0.009 -0.021∗∗∗

(0.003) (0.002)

Crypto FE Yes Yes Yes Yes

Clustering Crypto Crypto Crypto Crypto

Observations 540 540 540 540

R2 0.026 0.032 0.271 0.271
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is associated with an increase in price discrepancy and potential arbitrage opportunities across crypto-

trading platforms. This result aligns with our intuition that a drop in blockchain computing power leads

to a greater discrepancy in cryptocurrency prices. Moreover, when we consider the model with the lagged

abnormal hashrate, we find a negative and statistically significant coefficient at the 90% confidence level.

This further confirms the relationship between unexpected changes in mining power and cryptocurrency

price discrepancies.

In Panel C of Table 3, we present the analysis results for the quoted spread and effective spread.

Consistent with the findings for the realized hashrate, we do not observe a significant relationship between

the abnormal hashrate and the quoted spread. The bid-ask spread, which represents the difference

between the best bid and ask prices, does not appear to be affected by changes in blockchain computing

power. However, when considering the effective spread, we find a negative and statistically significant

association with both the contemporaneous abnormal hashrate (significant with p-value < 0.05) and the

lagged abnormal hashrate (significant with p-value < 0.01). This suggests that an unexpected decline in

mining power is associated with an increase in the distance between the transaction price and the bid-ask

midpoint, indicating higher transaction costs and a deterioration in liquidity.

In Panel D of Table 3, we present the results of the panel regression estimating the price movement

after each trade, using price impact as the dependent variable. We find that the contemporaneous

abnormal hashrate and lagged abnormal hashrate are both negatively related to price impact, although

the coefficients are not statistically significant. However, when we consider the transaction size using

Kyle (1985)’s Lambda measure, we observe a significant relationship between the abnormal hashrate and

price impact. In Column (3), the estimated coefficient of abHashRatet is -0.019, marginally significant

at the p-value <0.1 level. Similarly, in Column (4), the coefficient of lagged abnormal hashrate is -0.021,

significant at the p-value <0.01 level. These results suggest that an unexpected crash in mining power

by one standard deviation would increase the price impact by 0.021×10−4 in the following day, which is

equivalent to a 2.1% increase relative to the sample average.

In summary, the results presented in Table 3 indicate that unexpected changes in the bitcoin blockchain’s

mining capacity have a significant impact on the market quality of cryptocurrency trading platforms.

Specifically, an unexpected decrease in mining capacity leads to higher volatility, increased price dis-

crepancy across platforms, and higher transaction costs. These findings align with the expectation that

blockchain mining capacity affects the speed, cost, security, and functionality of transaction validation,

which in turn influence the price efficiency and liquidity of cryptocurrency markets. Moreover, our

results contribute to the existing literature on blockchain characteristics and their impact on cryptocur-

rency pricing, supporting the notion that blockchain features play a crucial role in shaping the dynamics

of cryptocurrency markets (Easley et al. (2019); Bhambhwani et al. (2021); Datta and Hodor (2022);

Pagnotta (2022)).

4.2 Robustness

In addition to conducting separate panel regression models for the contemporaneous and lagged hashrate,

as described in Equations (1) and (2), we also explore the combined effects of these measures on market

quality. To achieve this, we estimate the following model, utilizing the same variable definitions as before:

MarketQualityi,t = β1norm(HashRate)t + β2norm(HashRate)t−1 + αi + εi,t (5)

By considering both the contemporaneous and lagged hashrate, we aim to gain a comprehensive

understanding of how these two factors jointly influence market quality. The coefficient β1 represents

the impact of the current day’s hashrate, while β2 captures the effect of the previous day’s hashrate on

market quality. Additionally, the variable αi accounts for the fixed effects specific to each cryptocurrency,

ensuring the model captures their unique characteristics. The error term is denoted as εi,t and is clustered

by cryptocurrency.



4 HASHRATE AND MARKET QUALITY

Table 4 presents the estimation results, which exhibit minimal changes compared to Table 2. Notably,

we observe statistically significant and negative coefficients (β2) for several market quality measures.

Specifically, return volatility, the quote-based arbitrage index, price impact, and Kyle’s Lambda exhibit

significant negative relationships with the previous day’s hashrate (p-value< 0.1 for return volatility, the

quote-based arbitrage index, and price impact, p-value < 0.05 for Kyle’s Lambda). These findings confirm

that a decrease in the previous day’s hashrate has an adverse effect on the quality of cryptocurrency

trading on the subsequent day.

Table 4. Realized hashrate

This table reports the panel regression results. The dependent variables are, in Panel A, cryptocurrency return, return volatility,

the trade-base arbitrage index and the quote-base arbitrage index, in Panel B the quoted spread, the effective spread, price

impact, and Kyle (1985)’s Lambda. These measures are computed according to the description in Section 3.1. The independent

variable is the actual blockchain hashrate. We also standardize the hashrate. We run the regressions for both the contemporaneous

hashrate and lagged hashrate separately. Our sample covers three cryptocurrencies (bitcoin, ether, and litecoin) traded on three

crypto trading platforms (Coinbase, FTX, and Kraken) from January to June 2021. We include cryptocurrency fixed effects. The

standard errors are clustered by cryptocurrency and are reported in parenthesis. Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Panel A

Return Volatility Arbitrage Index (Trade) Arbitrage Index (Quote)

(1) (2) (3) (4)

HashRatet 0.002 -0.000 0.011 0.010

(0.003) (0.001) (0.004) (0.005)

HashRatet−1 0.007 -0.005∗ -0.015 -0.016∗

(0.003) (0.002) (0.005) (0.005)

Crypto FE Yes Yes Yes Yes

Clustering Crypto Crypto Crypto Crypto

Observations 540 540 540 540

R2 0.006 0.089 0.415 0.026

Panel B

Quoted Spread Effective Spread Price Impact Kyle

(1) (2) (3) (4)

HashRatet 0.026 -0.068 0.013 -0.039

(0.012) (0.041) (0.007) (0.019)

HashRatet−1 -0.007 -0.111 -0.020∗ -0.065∗∗

(0.004) (0.058) (0.005) (0.014)

Crypto FE Yes Yes Yes Yes

Clustering Crypto Crypto Crypto Crypto

Observations 540 540 540 540

R2 0.559 0.093 0.029 0.277

Furthermore, the re-estimation of Equation (2) with both the contemporaneous and lagged abnormal

hashrate as independent variables confirms the findings reported in Table 3. The estimated coefficients

of both the contemporaneous hashrate and the lagged hashrate are consistently negative and statistically

significant for return volatility, effective spread, and Kyle’s Lambda. This suggests that an unexpected
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decrease in the same-day’s or the previous day’s blockchain mining capacity has a significant impact on

increasing volatility and trading costs (as measured by effective spread and Kyle’s Lambda). Additionally,

we observe a significant negative association between the lagged abnormal hashrate and the quote-based

arbitrage index, as well as price impact.

Table 5. Abnormal hashrate

This table reports the panel regression results. The dependent variables are, in Panel A, cryptocurrency return, return volatility,

the trade-base arbitrage index and the quote-base arbitrage index, in Panel B the quoted spread, the effective spread, price

impact, and Kyle (1985)’s Lambda. These measures are computed according to the description in Section 3.1. The independent

variable is the abnormal blockchain hashrate, which is the difference between the actual hashrate and the smoothed hashrate based

on Hamilton (2018). We also standardize the abnormal hashrate. We run the regressions for both the contemporaneous abnormal

hashrate and lagged abnormal hashrate separately. Our sample covers three cryptocurrencies (bitcoin, ether, and litecoin) traded

on three crypto trading platforms (Coinbase, FTX, and Kraken) from January to June 2021. We include cryptocurrency fixed

effects. The standard errors are clustered by cryptocurrency and are reported in parenthesis. Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Panel A

Return Volatility Arbitrage Index (Trade) Arbitrage Index (Quote)

(1) (2) (3) (4)

abHashRatet 0.003 -0.001∗∗ 0.002 0.000

(0.001) (0.000) (0.001) (0.001)

abHashRatet−1 0.006∗∗ -0.003∗∗∗ -0.004 -0.007∗

(0.001) (0.000) (0.002) (0.002)

Crypto FE Yes Yes Yes Yes

Clustering Crypto Crypto Crypto Crypto

Observations 540 540 540 540

R2 0.025 0.095 0.414 0.045

Panel B

Quoted Spread Effective Spread Price Impact Kyle

(1) (2) (3) (4)

abHashRatet 0.017 -0.039∗ -0.001 -0.015∗

(0.008) (0.009) (0.002) (0.005)

abHashRatet−1 0.012 -0.044∗∗ -0.009∗ -0.019∗∗

(0.008) (0.005) (0.003) (0.002)

Crypto FE Yes Yes Yes Yes

Clustering Crypto Crypto Crypto Crypto

Observations 540 540 540 540

R2 0.564 0.092 0.032 0.272

5 Conclusion

With the surge in popularity of cryptocurrencies as a new financial instrument, concerns regarding the

trading quality offered by cryptocurrency trading platforms have surfaced. Regulatory bodies like the

U.S. SEC and the U.K. FCA have heightened their scrutiny of cryptocurrency trading, necessitating an
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investigation into the market quality provided by crypto trading platforms and the factors influencing

their proper functioning.

In this study, we explore the relationship between blockchain’s aggregate mining power and the market

quality offered by crypto trading platforms. Analyzing historical intraday data of three cryptocurrencies

traded on three platforms from January to June 2021, we calculate various market quality measures,

including price discrepancy and liquidity. Through panel regression analysis, we observe that a decrease

in blockchain’s aggregate mining power results in wider cross-platform price discrepancies and increased

arbitrage opportunities. Furthermore, we find that the liquidity of the crypto market deteriorates when

the blockchain’s aggregate mining power declines.

Additionally, we compute abnormal hashrate by capturing the difference between the actual daily

hashrate and a smoothed hashrate, and repeat the regression analysis using abnormal hashrate as the

independent variable. The results validate our previous findings, demonstrating a decline in market

quality when the blockchain’s aggregate mining power decreases. Specifically, both contemporaneous and

one-lag abnormal hashrate exhibit a significant negative correlation with the quote-base arbitrage index,

effective spread, and Kyle’s Lambda.

Our study makes a valuable contribution to the academic literature as the first empirical examination

of the relationship between blockchain mining and the crypto market trading environment. The findings

also shed light on the market design of crypto trading, where trading settlement occurs on the blockchain

and relies on the validation process beyond the control of trading providers. Nonetheless, we discover

that the aggregate mining power can impact the trading quality offered by the platforms. Therefore,

regulators and stakeholders should consider this unique feature of blockchain technology when evaluating

the design of a fair and well-functioning market for crypto assets.
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